

Arav Bhargava

(703) 963-6325 · abhargava@college.harvard.edu · www.linkedin.com/in/arav-bhargava · aravsporfolio.com

EDUCATION

HARVARD COLLEGE

B.S. in Electrical Engineering. Minor in Computer Science. **GPA:** 3.97

Cambridge, MA

May 2028

Relevant Coursework: Computer-Aided Machine Design; Vector Calculus; Biomechanics and Assistive Robotics (Spring 2026)

Student Groups: Harvard Ventures (Board), The Bottom Line (Host), Harvard Biotech Club, Harvard GAMI, Club Swimming

Awards: Regeneron Science Talent Search Top 40, VEX Robotics World Championship Finalist; Capital Emmy Winner

TECHNICAL SKILLS

Skills: Robotics & Embedded Systems (Python, Embedded C/C++), Actuation & Control (servo/DC/BLDC integration, PID/trajectory basics), Perception (OpenCV, OpenPIV), ML for Robotics (PyTorch, TensorFlow, data pipelines with Pandas), Electronics (circuit design/analysis, PCB design in KiCad), Mechanical Design (SolidWorks, Fusion 360, FEA, FDM 3D printing)

PROFESSIONAL EXPERIENCE

MOBILIS

Cambridge, MA

Founder, Accessible Prostheses for Developing Countries

September 2021-Present

- Designed and patented a <\$40, accessible, size-adjustable prosthesis for upper-limb amputees in developing regions
- Rapid-prototyped and iterated 300+ designs with end-users and clinicians (Fusion 360, FDM 3D printing, FEA)
- Engineered novel BOA tensioning system, pseudo-silicone interior liner, and adapted mechanical hook/hand control
- Validated design through bench testing and user trials to meet ISO socket standards, achieving comfort ratings surpassing traditional prosthetics at <1% of cost; deploying in Ukraine and India (Dec 2025).
- Launched “The Prosthetic Experience” podcast (NPR National award-winner; 10,000+ Listens)
- Awarded Regeneron STS National Top 40 (\$27,000); featured on *ABC News*, *Scripps News*, *3Dprint.com*, *The 74*

HARVARD MICROROBOTICS LABORATORY

Cambridge, MA

Researcher, Selected as a PRISE Fellow to advance microrobotic applications

May 2025-Present

- Developed and open-sourced a Low-Turbulence Vertical Wind Tunnel for Microrobotic Insect Flight Testing with 44% reduction in turbulence; design to be used by MIT and Berkeley labs (KiCad, Fusion 360, C++)
- Designed a computer vision program to analyze wind particle flow and perform PIV analysis of microrobot aerodynamics (Python, OpenCV, OpenPIV)

CODA LLC

McLean, VA

Summer Associate, Leading Digital Provider to the Built Environment

June-August 2023

- Helped develop a new ML-driven approach to detect expensive errors in construction design (Revit, Dynamo)
- Wrote 3D model design check scripts with Dynamo to create an egress path program to sell to OSHA

FEATURED PROJECTS AND ADDITIONAL EXPERIENCE

REAL-TIME TRAINABLE BIONIC ARM FOR IMPROVING ROBOTIC MODELS (Project)

April 2025

- Engineered an EMG-based embedded control system for a multi-DOF bionic arm robot, with analog filtering (20–500 Hz) and noise cancellation, achieving real-time, low-latency control and reducing model training time to <2 minutes.
- Implemented a KNN classifier in C++ to control multi-servo tendon actuation; validated responsive hand motion via oscilloscope and EMG trials across multiple users

SO101 ROBOT ARM - TELEOP, VISION DATASET, AND POLICY TRAINING (Project)

January 2026-Present

- Built an SO101 arm manipulation pipeline in Python for teleoperation and control, with synchronized logging of observations and actions to create demonstration datasets for pick-and-place.
- Added vision-based perception for pose estimation and ran baseline policy training on collected demos, tracking success rate, and common failure modes across different object positions and lighting conditions.

VEX ROBOTICS - POTOMAC ROBOTICS TEAM (Engineering Lead)

September 2020-June 2024

- Engineered, fabricated, and coded competition robots (VEX), including mechatronic subsystems, sensors & actuators, and autonomous control for global-level robotics competitions.
- Implemented pneumatic-controlled transmission systems; utilized C++ to create autonomous programs

HARVARD VENTURES (Board)

January 2025-Present

- Co-hosting and directing Harvard Ventures podcast “The Bottom Line” end-to-end
- Interviewing Fortune 500 founders on building extraordinary ventures (15,000+ listens)